Gating currents
نویسندگان
چکیده
منابع مشابه
Gating of the Bacterial Sodium Channel, NaChBac: Voltage-dependent Charge Movement and Gating Currents
The bacterial sodium channel, NaChBac, from Bacillus halodurans provides an excellent model to study structure–function relationships of voltage-gated ion channels. It can be expressed in mammalian cells for functional studies as well as in bacterial cultures as starting material for protein purification for fine biochemical and biophysical studies. Macroscopic functional properties of NaChBac ...
متن کاملPharmacological and kinetic analysis of K channel gating currents
We have measured gating currents from the squid giant axon using solutions that preserve functional K channels and with experimental conditions that minimize Na channel contributions to these currents. Two pharmacological agents were used to identify a component of gating current that is associated with K channels. Low concentrations of internal Zn2+ that considerably slow K channel ionic curre...
متن کاملSodium channel gating currents. Origin of the rising phase
There has been some uncertainty in the past as to the origin of the rising phase of the gating current. We present evidence here that proves that the gating current does not have a rising phase and that the observed rising phase is due to an uncompensated series resistance in the Frankenhaeuser-Hodgkin (F-H) space. When a squid giant axon is bathed in a solution that is 10-20% hyperosmotic with...
متن کاملInactivation of Gating Currents of L-Type Calcium Channels
In studies of gating currents of rabbit cardiac Ca channels expressed as alpha 1C/beta 2a or alpha 1C/beta 2a/alpha 2 delta subunit combinations in tsA201 cells, we found that long-lasting depolarization shifted the distribution of mobile charge to very negative potentials. The phenomenon has been termed charge interconversion in native skeletal muscle (Brum, G., and E. Ríos. 1987. J. Physiol. ...
متن کاملA Quantitative Description of KcsA Gating I: Macroscopic Currents
The prokaryotic K(+) channel KcsA is activated by intracellular protons and its gating is modulated by transmembrane voltage. Typically, KcsA functions have been studied under steady-state conditions, using macroscopic Rb(+)-flux experiments and single-channel current measurements. These studies have provided limited insights into the gating kinetics of KcsA due to its low open probability, unc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Scholarpedia
سال: 2008
ISSN: 1941-6016
DOI: 10.4249/scholarpedia.3482